Algorima Triangle Chaim Cipher dan contohnya

Algorima Triangle Chaim Cipher.

 

Algorima Triangle Chaim Cipher.

Algoritma kriptografi triangle chain atau umumnya dikenal dengan sebutan rantai segitiga merupakan cipher yang ide awalnya dari algoritma kriptografi One Time Pad, yaitu kunci yang dibangkitkan secara random dan panjang kunci sepanjang plainteks yang akan dienkripsi. Tetapi pada algoritma kriptogarfi rantai segitiga pembangkitan kunci-kunci tersebut secara otomatis dengan teknikberantai.

 

 

Teknik/Konsep :

-       Melakukan perluasan dari teknik kriptografi algoritma caesar.

-       Melakukan pengeseran karakter berdasarkan kunci dan faktor pengali.

-       Melakukan enkripsu dan deskripsi secara berantai dan ganda artinya ada dua kali proses enkripsi maupun deskripsi.

-       Formula Enkripsi :

 

a. Segitiga Pertama

Untuk baris 1 :

Mij = ( P [ j ] + ( K * R [ 1 ] ) ) mod 256

 

Untuk baris 2 :

 

Nilai J > 1 < N

Mij = (M[i-1] + (K*R[i])) mod 256

 

Cipher hasil segitiga pertama diambil dengan fomula :

 

Mij = [ i , ( n+1 ) – n ]

b. Segitiga Kedua

Plainteks untuk segitiga kedua adalah cipher hasil segitiga pertama.

 

a. untuk baris 1 :

Mij = [P(j) + (K*R(1))] mod 256

 

b. untuk baris 2 :

 

Nilai J > ( n+1 ) – i

Mij = [M(i,j) + (K*R(i))] mod 256

Cipherteks diambil dgn formula :

 

Formula Dekripsi :

Proses dekripsi dilakukan sebanyak 2 kali.

 

a. Deskripsi Segitiga pertama.

- Untuk Baris pertama

 

Mij = [C(j) –(K*R(i))] mod 256

 

-   Untuk baris kedua dan seterusnya

 

J < (n+i) – i

Mij = [C(i-1),j – (K*R(i))] mod 256

 

Plaintext hasil segitiga pertama dapatkan dengan foemula

 

Mij = [ i, (n+1) – n]

 

b. Dekripsi Segitiga Kedua

Chiper yang diproses pada dekripsi segitiga kedua adalah hasil dekripsi segitiga pertama :

-     Untuk segitiga pertama

 

Mij = [C(j) –(K*R(1))] mod 256

 

-     Untuk Baris kedua ,dst :

 

Mij = [C(i-j),j – (K*R(i)] mod 256

 

Plainteks diambil dengan formula :

Mij = [(n+1)-i,1)

 

Keterangan :

P = Plainteks I = Indeks baris

C = Chipertext J = Indeks kolom

K = Kunci R = Faktor pengali

N = Jumlah Karakter plainteks

cipherteks

 

CONTOH :

 

Plainteks = CHRIS

K = 5

C

H

R

I

S

67

72

82

73

83

 

R = R1 R2 R3 R4 R5

1 2 3 4 5

 

A.    Enkripsi ∆ 1 :

Untuk baris 1 = P ( i-1)

i = 1

Mij = [ P (i) + ( K * R (i) ))] mod 256

M11 = ( C + (5*1) ) mod 256

=( 67 + 5 ) mod 256

= 72 è H

 

M12 = (H+ (5*1) ) mod 256

=( 72 + 5 ) mod 256

= 77 è M

 

M13 = ( R + (5*1) ) mod 256

=( 82 + 5 ) mod 256

= 87 è W

 

M14 = ( I + (5*1) ) mod 256

=( 73 + 5 ) mod 256

= 78 è N

 

M15 = ( S + (5*1) ) mod 256

=( 83 + 5 ) mod 256

= 88 è X

 

 

J = 1 2 3 4 5

 

R1 R2 R3 R4 R5

C/67

H/72

R/82

I/73

S/83

 

H/72

M/77

W/87

N/78

X/88

 

 

 

 

 

W/87

a/97

X /88

b/98

 

 

 

 

 

 

 

 

 

p/112

g/103

q/113

 

 

 

 

 

 

 

 

 

 

 

 

 

{ / 123

…/133

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ž/158

i/0

 

 

1

 

 

2

 

3

 

4

 

 

5

 

Baris ke 2 ( i = 2 ) :

Mij = M ( i -1 ), j + ( K * R ( i ) ) mod 256

M22 = M (2-1), 2 + (5 * 2 ) mod 256

= M (1,2 ) + ( 5 * 2 ) mod 256

= ( M + 10 ) mod 256

= ( 77 + 10 ) m od 256

= 87 è W

 

M23 = M (2-1), 3 + (5 * 2 ) mod 256

= M (1,3 ) + ( 5 * 2 ) mod 256

= ( W + 10 ) mod 256

= ( 87 + 10 ) m od 256

= 97 è a

 

M24 = M (2-1), 4 + (5 * 2 ) mod 256

= M (1,4 ) + ( 5 * 2 ) mod 256

= ( N + 10 ) mod 256

= ( 78 + 10 ) m od 256

= 88 è X

 

M25 = M (2-1), 5 + (5 * 2 ) mod 256

= M (1,5 ) + ( 5 * 2 ) mod 256

= ( X + 10 ) mod 256

= ( 88 + 10 ) m od 256

= 98 è b

 

 

 

 

Baris ke 3 ( i = 3 ) :

Mij = M ( i -1 ), j + ( K * R ( i ) ) mod 256

M33 = M (3-1), 3 + (5 * 3 ) mod 256

= M (2,3 ) + ( 5 * 3 ) mod 256

= ( a + 15 ) mod 256

= ( 97 + 15 ) mod 256

= 112 è p

 

M34 = M (3-1), 4 + (5 * 3 ) mod 256

= M (2,4 ) + ( 5 * 3 ) mod 256

= ( X + 15 ) mod 256

= ( 88 + 15 ) mod 256

= 103 è g

 

M35 = M (3-1), 5 + (5 * 3 ) mod 256

= M (2,5 ) + ( 5 * 3 ) mod 256

= ( b + 15 ) mod 256

= ( 98 + 15 ) mod 256

= 113 è q

 

 

Baris ke 4 ( i = 4 ) :

Mij = M ( i -1 ), j + ( K * R ( i ) ) mod 256

M44 = M (4-1), 4 + (5 * 4 ) mod 256

= M (3,4 ) + ( 5 * 4 ) mod 256

= ( g + 20 ) mod 256

= ( 103 + 20 ) mod 256

= 123 è {

 

M45 = M (4-1), 5 + (5 * 4 ) mod 256

= M (3,5 ) + ( 5 * 4 ) mod 256

= ( q + 20 ) mod 256

= ( 113 + 20 ) mod 256

= 133 è

 

Baris ke 5 ( i = 5 ) :

Mij = M ( i -1 ), j + ( K * R ( i ) ) mod 256

M44 = M (5-1), 5 + (5 * 5 ) mod 256

= M (4,5 ) + ( 5 * 5 ) mod 256

= ( … + 25 ) mod 256

= ( 113 + 25 ) mod 256

= 158 è ž

 

Plainteks = C H R I S

Cipher ∆ 1 = H W p { ž

 

 

 

 

B.     Segitiga kedua

 

P = H W p { ž

K = 5

 

 

 

H/72

W/87

p/112

{ / 123

ž/158

 

M/77

\ /92

u/117

€/128

£/163

 

W/87

f/102

⌂/127

ž /138

 

 

 

 

 

f/102

u/117

Ž/142

 

 

 

 

 

 

 

 

 

 

 

z/122

 

‰ /137

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“ /147

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i/0

 

 

1

 

 

2

 

3

 

4

 

 

5

 

Baris 1

Mij = ( P [i – 1 ] , j + ( K * R [i] )) mod 256

M11 = ( P [1-1] , 1 + ( 5 * 1 ) ) mod 256

= ( P (0,1) + 5 ) mod 256

= ( H + 5 ) mod 256

= ( 72 + 5 ) mod 256

= 77 è M

 

M12 = ( P [1-1] , 2 + ( 5 * 1 ) ) mod 256

= ( P (0,2) + 5 ) mod 256

= ( W + 5 ) mod 256

= ( 87 + 5 ) mod 256

= 92 è \

 

M13 = ( P [1-1] , 3 + ( 5 * 1 ) ) mod 256

= ( P (0,3) + 5 ) mod 256

= ( p + 5 ) mod 256

= ( 112 + 5 ) mod 256

= 117 è u

 

M14 = ( P [1-1] , 4 + ( 5 * 1 ) ) mod 256

= ( P (0,4) + 5 ) mod 256

= ( { + 5 ) mod 256

= ( 123 + 5 ) mod 256

= 128 è

 

M15 = ( P [1-1] , 5 + ( 5 * 1 ) ) mod 256

= ( P (0,5) + 5 ) mod 256

= ( ž + 5 ) mod 256

= ( 158 + 5 ) mod 256

= 163 è £

 

 

 

Baris 2 i = 2

Mij = ( P [i – 1 ] , j + ( K * R [i] )) mod 256

M21 = ( P [2-1] , 1 + ( 5 * 2 ) ) mod 256

= ( P (1,1) + 10 ) mod 256

= ( M + 10 ) mod 256

= ( 77 + 10 ) mod 256

= 87 è W

M22 = ( P [2-1] , 2 + ( 5 * 2 ) ) mod 256

= ( P (1,2) + 10 ) mod 256

= ( \ + 10 ) mod 256

= ( 92 + 10 ) mod 256

= 102 è f

 

M23 = ( P [2-1] , 3 + ( 5 * 2 ) ) mod 256

= ( P (1,3) + 10 ) mod 256

= ( u + 10 ) mod 256

= ( 117 + 10 ) mod 256

= 127 è

 

M24 = ( P [2-1] , 4 + ( 5 * 2 ) ) mod 256

= ( P (1,4) + 10 ) mod 256

= ( € + 10 ) mod 256

= ( 128 + 10 ) mod 256

= 138 è Š

 

Baris 3 i = 3

Mij = ( P [i – 1 ] , j + ( K * R [i] )) mod 256

M31 = ( P [3-1] , 1 + ( 5 * 3 ) ) mod 256

= ( P (2,1) + 15 ) mod 256

= ( W + 15 ) mod 256

= ( 87 + 15 ) mod 256

= 102 è f

 

M32 = ( P [3-1] , 2 + ( 5 * 3 ) ) mod 256

= ( P (2,2) + 15 ) mod 256

= (f + 15 ) mod 256

= ( 102 + 15 ) mod 256

= 117 è u

M33 = ( P [3-1] , 3 + ( 5 * 3 ) ) mod 256

= ( P (2,3) + 15 ) mod 256

= ( ⌂ + 15 ) mod 256

= ( 127 + 15 ) mod 256

= 142 è Ž

 

 

Baris 4 i = 4

Mij = ( P [i – 1 ] , j + ( K * R [i] )) mod 256

M41 = ( P [4-1] , 1 + ( 5 * 4 ) ) mod 256

= ( P (3,1) + 20 ) mod 256

= ( f + 20 ) mod 256

= ( 102 + 20 ) mod 256

= 122 è z

 

M42 = ( P [4-1] , 2 + ( 5 * 4 ) ) mod 256

= ( P (3,2) + 20 ) mod 256

= ( u + 20 ) mod 256

= ( 117 + 20 ) mod 256

= 137 è

 

 

Baris 5 i = 5

Mij = ( P [i – 1 ] , j + ( K * R [i] )) mod 256

M51 = ( P [5-1] , 1 + ( 5 * 5 ) ) mod 256

= ( P (4,1) + 25 ) mod 256

= ( z + 25 ) mod 256

= ( 122 + 25 ) mod 256

= 147 è

 

Cipher ∆ II = “ ‰ Ž Š £

 

 

 

Dekripsi :

 

C = “ ‰ Ž Š £

K = 5

 

Ž

Š

£

147

137

142

138

163

R1 R2 R3 R4 R5

 

R = 1 2 3 4 5

 

 

“/147

‰/137

Ž/142

Š/138

£/163

 

Ž/142

„/132

‰/137

…/133

ž/158

 

 

 

 

 

z/122

⌂/127

{ /123

“/148

 

 

 

 

 

 

 

 

 

p/112

l/108

…/133

 

 

 

 

 

 

 

 

 

 

 

 

 

X / 88

q/113

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X/88

i/0

 

 

1

 

 

2

 

3

 

4

 

 

5

 

 

Baris 1 i = 1

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M11 = ( C [1-1] , 1 - ( 5 * 1 ) ) mod 256

= ( C (0,1) - 5 ) mod 256

= ( “ - 5 ) mod 256

= ( 147 - 5 ) mod 256

= 142 è Ž

 

M12 = ( C [1-1] , 2 - ( 5 * 1 ) ) mod 256

= ( C (0,2) - 5 ) mod 256

= ( ‰ - 5 ) mod 256

= ( 137 - 5 ) mod 256

= 132 è

 

M13 = ( C [1-1] , 3 - ( 5 * 1 ) ) mod 256

= ( C (0,3) - 5 ) mod 256

= ( Ž - 5 ) mod 256

= ( 142 - 5 ) mod 256

= 137 è

 

M14 = ( C [1-1] , 4- ( 5 * 1 ) ) mod 256

= ( C (0,4) - 5 ) mod 256

= ( Š - 5 ) mod 256

= ( 138 - 5 ) mod 256

= 133 è

 

M15 = ( C [1-1] , 5 - ( 5 * 1 ) ) mod 256

= ( C (0,5) - 5 ) mod 256

= ( £ - 5 ) mod 256

= ( 163 - 5 ) mod 256

= 158 è ž

Baris 2 i = 2

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M22 = ( C [2-1] , 2 - ( 5 * 2 ) ) mod 256

= ( C (1,2) - 10 ) mod 256

= ( „ - 10 ) mod 256

= ( 132 - 10 ) mod 256

= 122 è z

 

M23 = ( C [2-1] , 3 - ( 5 * 2 ) ) mod 256

= ( C (1,3) - 10 ) mod 256

= ( ‰ - 10 ) mod 256

= ( 137 - 10 ) mod 256

= 127 è

 

M24 = ( C [2-1] , 4 - ( 5 * 2 ) ) mod 256

= ( C (1,4) - 10 ) mod 256

= ( … - 10 ) mod 256

= ( 133 - 10 ) mod 256

= 123 è {

 

M25 = ( C [2-1] , 5 - ( 5 * 2 ) ) mod 256

= ( C (1,5) - 10 ) mod 256

= ( ž - 10 ) mod 256

= ( 158 - 10 ) mod 256

= 148 è

 

 

Baris 3 i = 3

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M33 = ( C [3-1] , 3 - ( 5 * 3 ) ) mod 256

= ( C (2,3) - 15 ) mod 256

= ( ⌂ - 15 ) mod 256

= ( 127 - 15 ) mod 256

= 112 è P

 

M34 = ( C [3-1] , 4 - ( 5 * 3 ) ) mod 256

= ( C (2,4) - 15 ) mod 256

= ( { - 15 ) mod 256

= ( 123 - 15 ) mod 256

= 108 è l

 

M35 = ( C [3-1] , 5 - ( 5 * 3 ) ) mod 256

= ( C (2,5) - 15 ) mod 256

= ( ” - 15 ) mod 256

= (148- 15 ) mod 256

= 133 è

 

 

 

Baris 4 i = 4

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M44 = ( C [4-1] , 4 - ( 5 * 4 ) ) mod 256

= ( C (3,4) - 20 ) mod 256

= ( l - 20 ) mod 256

= ( 108 - 20 ) mod 256

= 88 è X

 

M45 = ( C [4-1] , 5 - ( 5 * 4 ) ) mod 256

= ( C (3,5) - 20 ) mod 256

= ( … - 20 ) mod 256

= ( 133 - 20 ) mod 256

= 113 è q

 

 

 

Baris 5 i = 5

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M55 = ( C [5-1] , 5 - ( 5 * 5 ) ) mod 256

= ( C (4,5) - 25 ) mod 256

= ( q - 25 ) mod 256

= ( 113 - 25 ) mod 256

= 88 è X

 

∆ 1 = Ž z p X X

 

 

 

 

C = Ž z p X X

142 122 112 88 88

 

 

Ž/142

z/122

p/112

X / 88

X/88

 

‰/137

u /117

k/107

S/83

S/83

 

⌂/127

k/107

a/97

I /73

 

 

 

 

 

P/112

\ /92

R/82

 

 

 

 

 

 

 

 

 

 

 

\ /92

 

H /72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“C/67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i/0

 

 

1

 

 

2

 

3

 

4

 

 

5

Baris ke 1

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M11 = ( C [1-1] , 1 - ( 5 * 1 ) ) mod 256

= ( C (0,1) - 5 ) mod 256

= ( Ž - 5 ) mod 256

= ( 142 - 5 ) mod 256

= 137 è

 

M12 = ( C [1-1] , 2 - ( 5 * 1 ) ) mod 256

= ( C (0,2) - 5 ) mod 256

= ( z - 5 ) mod 256

= ( 122 - 5 ) mod 256

= 117 è u

 

M13 = ( C [1-1] , 3 - ( 5 * 1 ) ) mod 256

= ( C (0,3) - 5 ) mod 256

= ( p - 5 ) mod 256

= ( 112 - 5 ) mod 256

= 107 è k

 

M14 = ( C [1-1] , 4 - ( 5 * 1 ) ) mod 256

= ( C (0,4) - 5 ) mod 256

= ( X - 5 ) mod 256

= ( 88 - 5 ) mod 256

= 83 è S

 

M15 = ( C [1-1] , 5 - ( 5 * 1 ) ) mod 256

= ( C (0,5) - 5 ) mod 256

= ( X - 5 ) mod 256

= ( 88 - 5 ) mod 256

= 83 è S

 

 

Baris ke 2

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M21 = ( C [2-1] , 1 - ( 5 * 2 ) ) mod 256

= ( C (1,1) - 10 ) mod 256

= ( ‰ - 10 ) mod 256

= ( 137 - 10 ) mod 256

= 127 è

 

M22 = ( C [2-1] , 2 - ( 5 * 2 ) ) mod 256

= ( C (1,2) - 10 ) mod 256

= ( u - 10 ) mod 256

= ( 117 - 10 ) mod 256

= 107 è k

 

M23 = ( C [2-1] , 3 - ( 5 * 2 ) ) mod 256

= ( C (1,3) - 10 ) mod 256

= ( k - 10 ) mod 256

= ( 107 - 10 ) mod 256

= 97 è a

 

M24 = ( C [2-1] , 4 - ( 5 * 2 ) ) mod 256

= ( C (1,4) - 10 ) mod 256

= ( S - 10 ) mod 256

= ( 83 - 10 ) mod 256

= 73 è I

 

 

Baris ke 3

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M31 = ( C [3-1] , 1 - ( 5 * 3 ) ) mod 256

= ( C (2,1) - 15 ) mod 256

= ( ⌂ - 15 ) mod 256

= ( 127 - 15 ) mod 256

= 112 è p

 

M32 = ( C [3-1] , 2 - ( 5 * 3 ) ) mod 256

= ( C (2,2) - 15 ) mod 256

= ( k - 15 ) mod 256

= ( 107 - 15 ) mod 256

= 92 è \

 

M33 = ( C [3-1] , 3 - ( 5 * 3 ) ) mod 256

= ( C (2,3) - 15 ) mod 256

= ( a - 15 ) mod 256

= ( 97 - 15 ) mod 256

= 82 è R

 

 

Baris ke 4

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M41 = ( C [4-1] , 1 - ( 5 * 4 ) ) mod 256

= ( C (3,1) - 20 ) mod 256

= ( p - 20 ) mod 256

= ( 112 - 20 ) mod 256

= 92 è \

 

M42 = ( C [4-1] , 2 - ( 5 * 4 ) ) mod 256

= ( C (3,2) - 20 ) mod 256

= ( \ - 20 ) mod 256

= ( 92 - 20 ) mod 256

= 72 è H

 

 

Baris ke 5

Mij = ( C [i – 1 ] , j - ( K * R [i] )) mod 256

M51 = ( C [5-1] , 1 - ( 5 * 5 ) ) mod 256

= ( C (4,1) - 25 ) mod 256

= ( \ - 25 ) mod 256

= ( 92 - 25 ) mod 256

= 67 è C

 

 

∆ ke II = C H R I S

 

 

10. Kriptografi Modern

Kriptografi modern berkerja dalam model operasi linier plainteks/cipherteks/kunci harus dikelompokan dalam jalan bit tertentu sesuai dengan algoritma-algoritma yang digunakan kegiatan dalam proses pekerjaan dibutuhkan karena setiap-setiap algoritma kriptografi modern berkerja secara berantai pada setiap aliran-aliran biner yang diterima.

 

 

Mode Operasi exit dalam kriptografi modern

-       Mode electronic Code Book (ECB)

-       Cipher Block Clinning (CBC)

-       Cipher Ferd Book (CFB)

-       Output Ferd Bock (OFB)

 

Keempat mode operasi ini melakukan operasinya berdasarkan operasi XOR, Operasi shift/wrapping dan bit padding.

Catatan : Shift/Wrapping pengeseran sejumlah operasinya berdasarkan kiri/kanan (left/right).

bit Padding = Penambah Sejumlah.

 

Hukum XOR ( Å )

1 Å 1 = 0

0 Å 0 = 0

1 Å 0 = 1

0 Å 1 = 1

Deskripsi => Pi = Ci Å K

-       Konversi semua kelompok/nilai hexa cipher terbiner.

-       Kelompokan menjadi 16 bit kelompok.

-       Kembalikan sejumlah bit yang dipasar pada posisi semua ( shift 1 bit to right ).

-       Hasil wrapping/shift di XOR dengan kunci.

-       Kelompok menjadi 8 bit perkelompok.

 

Mode chiper book climming (Bc)

-       Melakukan operasi manipulasi bit secara block.

-       Membuuhkan block misiat (infial vektor/IV Co) sebagai block awal rantai proses.

-       Block kunci dan IV/Co harus sama sesuai dengan jumlah block yang ditentukan.

-       Block plainteks/cipher di XOR dengan setiap nilai Ci-1 kemudian hasilnya di XOR dengan kunci dengan melakukan shift/wrapping.

 

CONTOH :

Plainteks = C H R I S X } Jlh bit perkelompok = 16 bit

Kunci = DS

 

Plainteks :

C

H

R

I

S

X

67

72

82

73

83

88

01000011

01001000

01010010

01001001

01010011

01011000

Blok 1 ( P1 )

Blok 2 (P2 )

Blok 3 (P3 )

 

D

S

68

83

01000100

01010011

Kunci :

 

 

 

Enkripsi dgn metode Mode XOR ( ECB )

Ci = Pi Å K

C1 = 0100001101001000 (P1)

= 0100010001010011 (K)

(Å)

C1` = 0000011100011011

C1 = 0000111000110110

 

C2 = 0101001001001001 (P2)

= 0100010001010011 (K)

(Å)

C2` = 0001011000011010

C2 = 0010110000110100

 

C3 = 0101001101011000 (P3)

= 0100010001010011 (K)

(Å)

C3` = 0001011100001011

C3 = 0010111000010110

Hasil Akhir :

C1 = 00001110 00110110

0E 36

C2 = 00101100 00110100

2C 34

C3 = 00101110 00010110

2E 16

Hasil / Cipher : 0E = 14

36 = 54

2C = 44

34 = 52

2E = 46

16 = 22

Cipher : Hexa = 0E 36 2C 34 2E 16

Symbol = ♫ 6 , 4 . ‒

 

Dekripsi :

0E

36

2C

34

2E

16

 

14

54

44

52

46

22

00001110

00110110

00101100

00110100

00101110

00010110

C1 = 000011100011011

= 000011100011011 (Hasil Wrapping)

= 0100010001010011 ( K)

(Å)

= 01000011 01001000

= 01000011 = 67 è C

= 01001000 = 72 è H

 

C2 = 001011000011010

= 001011000011010 (Hasil Wrapping)

= 0100010001010011 ( K)

(Å)

= 01010010 01001001

= 01010010 = 82 è R

= 01001001 = 73 è I

 

C3 = 001011100001011

= 001011100001011 (Hasil Wrapping)

= 0100010001010011 ( K)

(Å)

= 01010011 01011000

= 01010011 = 83 è S

= 01011000 = 88 è X


 BACA JUGA :


Pengertian Kriptografi dan Contohnya


Caesar Chiper dan Contohnya


Algoritma Affine Chiper dan Contohnya


Kriptografi Model Transposition


Algoritma Coulumnar Transposition dan contohnya


Algoritma Vegeneere Cipher dab contohnya


Algorima Triangle Chaim Cipher dan contohnya

0 Response to "Algorima Triangle Chaim Cipher dan contohnya"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel